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Analysis of the Symmetrical Modes for an
Eccentrically Cladded Fiber

NICHOLAS M. METROU, JOHN D. KANELLOPOULOS, JOHN A. ROUMELIOTIS, AND JOHN G.

FIKIORIS

A Mract —This paper examines the core and the cladding modes of an

eccentrically cladded three-layer dielectric wavegnide. The solutions are

speciatiied to small eccentricities, and exact closed-form expressions for

the normafiied deviations of the cutoff wavennmbers from those of the

concentric case are determined. Numerical results for the symmetrical

cladding modes of the fiber are given.

I. INTRODUCTION

T HE EVALUATION OF the cutoff wavenumbers of

the symmetrical (@-independent) modes for an ecc-

entrically cladded three-layer dielectric waveguide of cir-

cular cross section, is examined in this paper. A special

analytical shape perturbation method, developed previ-

ously’ for waveguide and scattering eccentric problems

[1], [2] is also used here for the analysis of both the clad-

ding and core modes of the waveguide. The structure,

illustrated in Fig. 1, is obviously a perturbation of the more

commonly concentric, circular dielectric waveguide shown

in Fig. 2 and treated in [3]. The method concludes with the

following expression for the cutoff wavenumbers of the

cladding modes:

I&J(f)= Knm(o)[l+ gnm(K.m(o)d)’] (1)

in which the g~m‘s are given by exact closed-form expres-

sions, whereas, for the core modes, the cutoff wavenumbers

of the eccentric problem are shown to coincide, up to

second order in kd included, with those of the concentric

waveguide.

II. THE ANALYSIS

Referring to the waveguide of Fig. 1 and with assumed

harmonic time dependence, we can expand the longitudinal

field components E~l(P) and H~l(P) for region I in terms

of cylindrical circular wave functions around the axis O,. A

similar expansion is used for the H~2( P) and E~2( P ) com-

ponent in region II. Finally, the outside field Ej3, H,zq in

region III is expanded in terms of wave functions around

the axis 02. The boundary conditions, to be satisfied for all
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Fig. 1. Cross section of the eccentric circular waveguide.

Fig. 2. Cross section of the concentric circular waveguide.

values of the azimuthal coordinate 63, are

E;l(P)=E;Z(P) E&( P)= E&(P)

H;,(P) =H;2(P) H&( P)= H&(P) (2)

on the boundary surface (1)–(11) and

on the boundary surface II–III, where the transverse com-

ponents EJ, H:( p = 1,2) can be found in terms of E#’, H:

by well-known relations. In order to satisfy the boundary

conditions (3), we reexpand the field components E~2, H~2

in terms of cylindrical circular wave functions around the
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TABLE I
VALUES OF Mom(c,, = 2,341, Crz =2.25)

TMom TEom
q= R1/R2

0.005 2.40W 5.5200 2.4048 5.5200

0.1 2.W30 5.5108 2.W48 5.5194

0.3 2.3898 5.4618 2.W30 5.4s50

0.4 2.3798 5. 4W6 2.3996 5.4467

0.6 2.3579’7’ 5.W80 2.3834 5.3938

0.8 2.3376 5.3671 2.3548 5.3e65

0.95 2.3253 5.3378 2.3298 5.3476

VALUES OF gn~

TMom TEom

q= R1/R2
m, 1 m,2 m, 1 m= ‘2

0.005 4-9.10-6 fj.4. ~o-6 -1.10-6 -I. I.1o-6

0.1 2.3.1 o-4 4.9.10-4 -3.2. ~f3-4 -6.6.10-4

0.3 1.7.1(3-3 ~.9.~o-3 -2.3.10-3 -5.6.10-4

0.4 2.7. ~0-3 ~.5.lo-3 -3.1.10-3 1.9.1(3-3

0.6 4.1.1 (3-3 -1.2.10-3 -2.7.10-3 2.8.10-3

0.8 4.2. ~0-3 6.2.~o-4 ~.~.~o-3 -~.7.~()-3

0.95 3.2. ~o-3 7.4. ~o-4 4.7.10-3 -1+. o.lo-’+

TABLE II

VALUES OF uom(q = R, /R ~ =0.2)

TMm TEom

Erl %2
m. 1 m. 2 m. 1 m, 2

2.3 2.2999 2.4048 5.5200 2.4048 5.5200

2.3 2.29 2.4040 5.5116 2.4047 5.5191

2.4 2.2 2.3891 5.4474 2,4039 5.4998

2.4 2.1 2.3718 5.3669 2.4029 5.4745

VALUES OF gom(q = RI/R2 = 0.2)

lmom ‘LOm

%.l %2 m. 1 m, ‘2 m. 1 ~. 2

2.3 2.2999 4.7.10-6 5.7.10-6 -~. g.lfJ-7 -1.6.10-6

2.3 2.29 ~.~.~o-4 ~.~.~~-4 -l.l.lo-b ._l.6.10-4

2.4 2.2 ~.9.~o-3 3.2.10-3 -2.6. ~o-3 -3.3.10-3

2.5 2.1 3.8. ~o-3 6.5. ~o-3 -5.6. ~o-3 _6.5. ~o-3

axis 02 using the well-known translational addition theo-

rems [4].

After straightforward steps similar to those in [1], one is

able to obtain the following four sets of linear homoge-

neous equations:
m cc

“=() “ ~=1 “

where the A’u, B’u and A,, Bu are the field expansion

coefficients for the H~z a~d E~z components, respectively,

and aPV, /3PV,yPV,dPV,iiPV, &,, ~PV,SPuare complicated func-

tions of the parameters of the problem. For nontrivial

solutions, the two separate sets of equations (4) and (5)

provide two characteristic equations in the form of infinite

determinants from which the cutoff wavenumbers can be

determined. These determinants are exactly the same in

form as those in [1] for the cutoff wavenumbers of the

Goubau waveguide. Consequently, the evaluation of the

determinants may proceed along the lines suggested in [1],

and one is able to obtain the development of the determi-

nant up to order ( kz d )2, where k2 is the wavenumber of

the field in region II (cladding).

It is important to notice here, that in a cladded fiber

there are two types of propagating modes, the cladding and

core ones, corresponding to the appropriate cutoff condi-

tion [3]. In each case, this suggests a particular limiting
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Fig. 3. Cutoff wavenumber variation q = R, /R ~ for an eccentric

cladded fiber (c,l =5, C,z =2, d/R2 =0.19).

procedure for the evaluation of the various terms in the

determinant previously mentioned. It can further be shown

that the cutoff wavenhmbers K.~(d) of the cladding modes

correspond one-to-one and have values very near the K.~(0)

of the concentric case (n> O, m > 1). The method concludes

with the expression (1), in which the g.~’s are given by

exact closed-form expressions. The calculations are then

focused on the symmetrical modes (n =0, TE and TM)

which, with the exception of the HE, ~ mode, are the

dominant ones in a dielectric waveguide [3]. Numerical

results for various cases of such modes are given in the

next section. On the other hand, the analysis for the core

modes of a cladded fiber show that the cutoff wavenum-

bers of the symmetrical modes in the eccentric case are the

same, at least up to the second order in kd included, as

those of the concentric structure, a result easily explained

by the fact that the cutoff condition concentrates the field

of the propagating surface mode mainly inside and just

outside the core and it is practically irrelevant what the

geometry of the cross section is a little beyond the core,

particularly for small kd.

III. NUMERICAL RESULTS

In the following tables we give the computed values of

u~~ = ko~(0) .Rz and the corresponding values of gOWfor

both TM and TE modes and for several values of q =

R, /R ~ (Table I); also for various pairs of values 6,1,6,2

(Table II). We see that for the chosen values of q (Table I)

and pairs of dielectric constants ~,1, E,2 (Table H) the go,’s

for the next higher mode, TMO1, are positive. This indicates

an increase in the operational bandwidth of the basic HE 11

mode whose cutoff frequency can be shown to remain zero.

The same remark has also been observed in the corre-

sponding Goubau waveguide. Another useful observation

is that the absolute values of gO~ for both the TM and TE

modes become smaller as q -0 and 6,1 — 6,2 + O.

In Fig. 3, the dependence of uO~ versus q = Rl /R2 for

both concentric and eccentric cases is shown for a specific

cladded fiber with c,, =5, C.z =2, and d/Rz =0.19, both

for the TMO1 and TEO1 modes. The chosen value of d/R2

satisfies the physical limitation d/R ~s 1 – q for all values

of q. The differences between eccentric and concentric

cases appear small in these curves. We may remark, how-

ever, that the symmetrical @independent modes will defi-

nitely be less affected by the eccentricity (which mainly

disturb the @-dependence of the field) than the higher

hybrid and @-dependent modes.
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Ridged Waveguides for Ultra-Broad-Band
Light Modulators

GOTTFRIED MAGERL, MEMBER, IEEE, AND PETER W. FROEHLING

A Mract —The electromagnetic field of the dominant mode propagating
in the inhotnogeneously dielectrically loaded double ridged waveguide is

given in terms of a modat series expansion. The numerical evaluation of the

propagation constant reveals a remarkably linear dispersion diagram in

close agreement with measurements performed in the 8-40-GHz range.
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Based on this analysis, the bandwidth of a ridged waveguide C02 -laser

modulator is calculated to exceed 40 GHz, when a 25-mm long CdTe

crystal is used as electrooptic material.

I. INTRODUCTION

E LECTROOPTICALLY mixing a fixed-frequency C02

laser with a frequency-tunable microwave signal yields

continuously tunable laser sidebands in the infrared. In

this way, the tunability of the microwave signal is trans-

ferred to the IR wavelength region from about 9– 11 ~m.

Moreover, the accurate sideband frequency can be de-
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